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Abstract
Emergent anyons are the key elements of the topological quantum computation
and topological quantum memory. We study a two-component fermion
model with conventional two-body interaction in a fine-tuned external field
and show that several subsets in the low-lying excitations obey the same
fusion rules as those of the toric code model. Those string-like (or domain
wall) excitations whose energy congregates in a small spatial region (a wall)
may be thought of as quasiparticles which, in a given subset, obey mutual
semionic statistics . We show how to peel off one of such subsets from other
degenerate subsets and manipulate anyons in cold dipolar Fermi atoms or cold
dipolar fermionic heteronuclear molecules in optical lattices by means of the
established techniques.

PACS numbers: 05.30.Pr, 05.30.Fk, 71.10.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Anyons are long wistful objects in two-dimensional condensed matter systems [1, 2]. An
interest to explore anyons is currently renewed because of the potential application of anyons
in topological quantum computation and topological quantum memory [3, 4]. The research
mainly focuses on two topics: non-Abelian fractional quantum Hall states [5–7] and particular
lattice spin models, e.g. the Kitaev toric code model [3], Levin-Wen model [8] and Kitaev
honeycomb-lattice spin model [9].

Experimentally, exciting, manipulating and detecting Abelian anyons have been suggested
or tried for the toric code model [10, 11] and for the insulating phase of the Kitaev honeycomb-
lattice model [12]. Although these non-trivial attempts are interesting, reliable evidence for the
existence of anyons is still lacking since neither the toric code model nor the honeycomb-lattice
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Figure 1. The ground state (taking |G↑〉 as an example) and the low-lying excitations in a set of
decoupled Ising spin chains which form a square lattice. From left to right and up to down, they
are |G↑〉, |Hia 〉, |Dia 〉, |Fia 〉, |WP 〉, |Wh

P,P ′ 〉, |Wd
P,P ′ 〉 and |WP ′ 〉. Up and down arrows label the

fermion with spin-up and spin-down. The empty circle is unoccupied site and up–down arrow is
double occupied. The white plaquette P ′′ has (Gs

P ′′ , Gs̄
P ′′ ) = (1, 1), the yellow has (−1, 1), the

red has (1, −1) and the grey has (−1,−1).

spin model is easy to be realized owing to the unconventional interactions between constitution
particles, e.g. cold atoms [13]. Very recently, the existence of non-Abelian anyons has been
evidenced in the fractional quantum Hall system with the filling factor ν = 5/2 [14].

A widely interesting question is as follows: Do we have a simple system with conventional
two-body interactions where some kinds of elementary excitations are anyons? One example
is a p-wave paired fermionic model in a square lattice, which is induced from the ground state
of the Kitaev honeycomb model and then the non-trivial statistics of some types of elementary
excitations are expected [15, 16]. Here we study a two-component fermion system which is
a set of decoupled Ising chains4. These chains form a two-dimensional square lattice with
each chain along the horizontal diagonal direction (see figure 1). The fermions within a chain
interact with on-site repulsive and nearest neighbor attractive potentials. Nussinov and Ortiz
[18] have found that the decoupled Ising chains are of the same spectrum as the toric code
model and Liven–Wen model. However, the ground state in general is not degenerate and the
topological order is trivial in this system.

In general, a string-like excitation (see figure 1) with a length L is an excitation with a
higher energy of order const · L. When the in-chain coupling constants are specially chosen
with respect to the external field so that const = 0, this string-like excitation becomes a low-
lying one and turns out to obey anyonic statistics. We will see that the low-lying excitations of
the model in such a special choice of the parameters are classified by several kinds of closed
subsets. One kind of them is local, including a single hole, a double occupant and a spin-flip.
Another two kinds consist of a local fermion and two string-like excitations. The fusion rules
and exchange phase factor in the latter two are exactly the same as those of the excitations
in the toric code model. We note that although these string-like excitations are non-local in
space, their excitation energy is still limited in one or two sites. In this sense, we can think
of these string-like excitations as quasiparticles. The statistics of the string-like excitations
themselves are bosonic while being mutual semionic.

We find that the ground state in this model is stable for a dipole–dipole long-range
interaction if inter-chain couplings are negligible. Thus, this system can be realized in

4 This conventional interacting fermion model can be mapped into a simple spin model in a honeycomb lattice. See
[17].
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cold dipolar Fermi atoms, e.g. rare-earth atoms of Ytterbium [19], or the cold fermionic
heteronuclear molecules like 40K87Rb [20], in an optical lattice. With respect to the ground state
degeneracy, any subset of the excitations is accompanied by many energetically degenerate
subsets. We discuss how to peel off a subset from other degenerate subsets and manipulate
anyons by means of the established cold atom and molecular techniques.

2. A two-component fermion model in a square lattice

We consider a simple Hamiltonian for two-component fermions in a square lattice (figure 1):

H = −
∑

〈ij〉hd ,s

Js(2ns,i − 1)(2ns,j − 1) + U
∑

i

(2n↑,i − 1)(2n↓,i − 1) + V
∑

i

(2n↑,i − 1),

(1)

where ns,i = c
†
s,ics,i with cs,i being annihilation operators of (pseudo)spin-s fermions. The

symbol 〈ij 〉hd means that the sum is over nearest neighbors along the horizontal diagonals of
squares. This is a set of decoupled Ising chains along the horizontal diagonals of squares.
We restrict to the nearest neighbor attractive interaction while on-site is repulsive, i.e. Js > 0
and U > 0. When V �= 0, the ground state is ferromagnetic and is not degenerate, i.e.
all spins are either up for V < 0 or down for V > 0. The low-lying excitations are trivial.
Fermionic excitations are a hole and a double occupant while the bosonic excitation is spin-flip.
Therefore, for general parameters, there is no non-trivial topological order in this system.

A topologically non-trivial excitation is a string-like excitation. When V �= 0, the
string-like excitation with the length L (see figure 1) is high energy which is of the order of
|V |L. However, if we tune the external potential V to vanish, the ground state becomes highly
degenerate and non-trivial string-like low-lying excitations emerge. In the following, we focus
on V = 0. In the case when the ground states of this Hamiltonian are 2n-fold degenerate, i.e.
every individual chain is ferromagnetic, for a set of spins {s1, . . . , sa, . . . , sn},

|G{s}〉 =
n∏

a=1

|Gsa
〉 =

∏
a,ia

c
†
sa,ia

|0〉, (2)

where n is the number of chains and ia is the site index in the ath chain. We first restrict our
study to the open boundary condition. The low-lying excitations above a given ground state
|G{s}〉, for a given site ia, read (see figure 1 for a given ground state |G↑〉 which will be defined
later)

Hia |G{s}〉 = (
c
†
sa,ia

+ csa,ia

)|G{s}〉 = csa,ia |G{s}〉,
Dia |G{s}〉 = (

c
†
s̄a ,ia

+ cs̄a,ia

)|G{s}〉 = c
†
s̄a ,ia

|G{s}〉,
Fia |G{s}〉 = iHiaDia |G{s}〉 = icsa,ia c

†
s̄a ,ia

|G{s}〉,
WP |G{s}〉 =

∏
i ′b�ia

Fi ′b |G{s}〉 =
∏
i ′b�ia

icsb,i
′
b
c
†
s̄b,i

′
b
|G{s}〉,

Wh
P,P ′ |G{s}〉 =

∏
i ′b<ia

Fi ′bHia |G{s}〉 =
∏
i ′b<ia

icsb,i
′
b
c
†
s̄b,i

′
b
csa,ia |G{s}〉,

Wd
P,P ′ |G{s}〉 =

∏
i ′b<ia

Fi ′bDia |G{s}〉 =
∏
i ′b<ia

icsb,i
′
b
c
†
s̄b,i

′
b
c
†
s̄a ,ia

|G{s}〉,

(3)

where P and P ′ denote two plaquettes on the right and left of ia, respectively. s̄ =↓ (↑) if
s =↑ (↓). The order of sites is defined by i ′b < ia if i ′b is on the left of ia for b = a or i ′b

3



J. Phys. A: Math. Theor. 43 (2010) 105306 Y Yu and Y Li

Table 1. Fusion rules of excitations.

Hia Dia Fia WP Wh
P,P ′ Wd

P,P ′ WP ′

Hia I Fia Dia Wd
P,P ′ WP ′ WP Wh

P,P ′

Dia Fia I Hia Wh
P,P ′ WP WP ′ Wd

P,P ′

Fia Dia Hia I WP ′ Wd
P,P ′ Wh

P,P ′ WP

WP Wd
P,P ′ Wh

P,P ′ WP ′ I Dia Hia Fia

Wh
P,P ′ WP ′ WP Wd

P,P ′ Dia I Fia Hia

Wd
P,P ′ WP WP ′ Wh

P,P ′ Hia Fia I Dia

WP ′ Wh
P,P ′ Wd

P,P ′ WP Fia Hia Dia I

is in a chain lower than the chain with ia. H,D,F create a hole, a double occupant and a
spin-flip. W , Wd and Wh create a half-infinite string of spin-flips, a spin-flip string with a
double occupant and a spin-flip string with a hole, respectively, since the spins of fermions
at sites i ′b < ia are flipped from their ground state configuration while those at jc > ia keep
in their ground state configuration. The excitation energies of these local and string-like
excitations in turn are 4Jsa

+ 2U , 4Js̄a
+ 2U , 4J↑ + 4J↓, 2J↑ + 2J↓, 2J↑ + 2J↓ + 2U and

2J↑ + 2J↓ + 2U , respectively. The finite energies of the string-like excitations are located at a
one or two sites means that they are deconfined and can be thought as quasiparticles. These
excitations are highly degenerate due to the degeneracy of the ground states. For example,
if {s1, . . . , sa . . . , sn} → {s1, . . . , s̄a . . . , sn}, H ↔ D and (�,<) → (�,>) in (3). One can
also flip spin in other chains to get a new degenerate excitation.

3. Fusion rules

Note that O2 = I (the identity operator) for O = H,D,F,W,Wd , Wh. The fusion rules of
these excitations are given in table 1. The fusion rules of the closed subset

{
I,Dia ,WP ,Wh

P,P ′
}

(
or

{
I,Hia ,WP ,Wd

P,P ′
})

are exactly the same as the fusion rules in the Kitaev toric code
model if we identify Dia ,WP and Wh

P,P ′ as ψ, e and m, respectively [3, 9]. The subset{
I,Fia ,Wh

P,P ′ ,Wd
P,P ′

}
has similar fusion rules, but F is bosonic.

{
I,Hia ,Dia ,Fia

}
is also a

closed subset and has similar fusion rules but with two fermions (H,D) and one boson (F).

4. Discrete gauge symmetry

The conserved quantities are simply Qs,i = 2ns,i − 1 (in fact, they are ns,i), which have
eigenvalues ±1 at each site. This generates a Z2 × Z2 gauge symmetry. For a plaquette
P, one can label the plaquette by A

sa

P = (
2nia,sa

− 1
)(

2nja,sa
− 1

)
for a pair of nearest

neighbors (ia, ja) in the ath chain, which also have eigenvalues ±1. Obviously, the ground
state is of all As

P = 1. The excitations are also of all As
P ′′ = 1 except for the right

plaquette P and left plaquette P ′ of ia where
(
A

sa

P , A
s̄a

P , A
sa

P ′ , A
s̄a

P ′
) = (−1, 1,−1, 1) for Hia ,

(1,−1, 1,−1) for Dia , (−1,−1,−1,−1) for Fia , (1, 1,−1,−1) for WP , (±1,∓1,∓1,±1)

for Wh
P,P ′ and (∓1,±1,±1,∓1) for Wd

P,P ′ . To distinguish the latter two, one uses(
Qsa,ia ,Qs̄a,ia

) = (−1,−1) for Wh
P,P ′ and (1, 1) for Wd

P,P ′ . In this sense, these string-like
excitations are also called Z2 × Z2 vortices.
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Figure 2. An example that two mutual anyons circle one another. Most of motions of the energy
centers of a quasiparticle may be realized by local operations. From the left to right, the upper line
to lower, a W circles around a Wd . However, when one quasiparticle moves across the chain that
another quasiparticle lives on, one has to flip many spins as shown in this figure.

Figure 3. Two pairs of domain walls in a torus by identifying left and right boundaries and the
upmost chain and the lowest chain.

5. Periodic boundary conditions and global degeneracy of the ground state

There are two global conserved quantities A↑ = ∏
i∈Ca

(2nia,↑ − 1)(2nja,↑ − 1) and A↓ =∏
i∈Ca

(2nia,↓ − 1)(2nja,↓ − 1), where Ca denotes a chain. If we put this model to a torus and
consider a periodic boundary condition, we have two constraints A↑,↓ = ∏

i∈C(2nia,−1)
2 = 1

because of nNa,s = n1a ,s and (2ni,s − 1)2 = 1 where Na is the number of the sites of
Ca. According to Kitaev [3], we can count the global degeneracy of the ground states, i.e.
2n−(n−2) = 4. Therefore, the topological degeneracy of the present model is the same as that in
the toric code model. This is consistent with a straightforward observation for two-decoupled
Ising rings [18].

A string-like excitation may be thought of as a spin flipping domain wall, a topological
defect (see figure 1, latter four). The open boundary condition allows an odd number of
domain walls in a given chain while the periodic boundary condition restricts the wall number
to even in a given chain. In the open boundary condition, two walls as ends of a string, e.g.
· · · ↑↑ ◦ ↓↓ · · · and · · · ↓↓↑↑ · · ·, may locate at different chains so that one can circle around
another as shown in figure 2. For the periodic boundary condition, the domain walls appear
pairwise, e.g. as shown in figure 3. Such a pair of walls cannot exchange. However, two walls
in different pairs can exchange.

6. Statistics in a given subset

We now study the statistics of the string-like excitations within a subset. The local excitations
H,D are the fermionic while F is bosonic. For a string-like excitation, the site of its domain
wall, ia, may be used to label its ‘position’, e.g. WP = Wia , etc, because their energies are
stored near these ‘positions’. W is bosonic because it is a string of F . Wd,h themselves are
bosonic, e.g.

Wh
1 Wh

2 = (H1)(H1D1H2) = (H1D1H2)(H1) = Wh
2 Wh

1 .

5
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m m m me e e e

Time

T1

T0

T2

Tf

Figure 4. Two pairs of m (dashed lines) and two pairs of e (solid lines) created from the ground
state at T0; they fuse into four fermions ψ (colored ellipses) at T1; then they split back to four pairs
at T2 and annihilate to the ground state at Tf. The green and red fermions exchange as the time
evolution, which leads to the wave function, differs by a minus sign from that of no exchange. The
arrow indicates the time direction.

R

Rmm Ree

Rme

Rem

Figure 5. The fermion exchange Rψψ divided into exchanges between the same type of string-like
excitations, Ree and Rmm, and double exchange e and m, RmeRem, which is equal to moving e (or
m) around m (or e).

Since W and Wd,h are distinguishable, the exchange between them does not make sense.
However, because WWh,d fuse into a fermion while themselves being bosons, when W
circles around Wh,d or vice versa, a minus sign is acquired. In general, this fact can be
proved by applying the consistent conditions, i.e. the pentagon and hexagon equations [21].
For the present case, one can take Kitaev’s graphical proof [9]. For simplicity, denote
{I,H,W,Wd} (or{I,D,W,Wh}) = {I, ψ, e,m}. Since e2 = m2 = I , we can create two
pairs of e and two pairs of m from a given ground state at an initial time T0 (see figure 4). These
excitations move along the paths as shown in figure 4. At certain time T1, they fuse into four
fermions ψ . As time flies, while blue and black fermions stay alone, green and red fermions
exchange their positions. Finally, at T2, the fermions split into m and e pairs which, at the end
(Tf), fuse back into the ground state. As two fermions exchange, this process contributes a
minus sign Rψψ = −1 to the ground state compared to a process without fermion exchange.
Now, examine this process in string-like excitation exchanges. As shown in figure 5, this
fermion exchange corresponds to four exchanges: Rem,Ree, Rmm and Rme. That is,

RmeReeRmmRem = RmeRem = Rψψ = −1, (4)

since Ree = Rmm = 1 as e and m themselves are bosonic. The minus sign when e and
m doubly exchange, or equivalently, e encircles m, RmeRem = −1, proves that the mutual
statistics between e and m is semionic. Note that for the subset {I,F,Wd ,Wh}, since
F = WdWh is bosonic, RWdWhRWhWd (=RFF = 1) is trivial.

6
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Using the operator formalism, the exchange process described by figure 5 for four
quasiparticles at ia < jb < kc < ld is, for example, as follows:

Wd
ia
Wjb

Wd
kc
Wld = Wia−1DiaWjb

Wkc−1Dkc
Wld

=
⎛
⎝∏

i<ia

Fi

⎞
⎠Dia

⎛
⎝ ∏

j�jb

Fj

⎞
⎠

⎛
⎝∏

k<kc

Fk

⎞
⎠Dkc

⎛
⎝∏

l�ld

Fl

⎞
⎠

= −
⎛
⎝∏

k<kc

Fk

⎞
⎠Dkc

⎛
⎝∏

l�ld

Fl

⎞
⎠

⎛
⎝∏

i<ia

Fi

⎞
⎠Dia

⎛
⎝ ∏

j�jb

Fj

⎞
⎠

= −Wd
kc
Wld W

d
ia
Wjb

, (5)

since {Di ,Dj } = 2δij , [Fi ,Fj ] = 2δij , {Fi ,Di} = 0, and [Fi ,Dj ]i �=j = 0. On the
other hand, figure 5 corresponds to a series of exchanges Rem, ReeRmm,Rme which, in the
operator formalism, are given by Wd

ia
Wjb

Wd
kc
Wld → Wd

ia
Wd

kc
Wjb

Wld → Wd
kc
Wd

ia
Wld Wjb

→
Wd

kc
Wld W

d
ia
Wjb

. Since the second right arrow does not make a sign change, the sign exchange
appearing in equation (5) comes from RmeRem as expected.

7. Peeling off a subset from degeneracy

So far, we only say that string-like excitations obey mutual semionic statistics but not call
them anyons or semions. The reason for this is there are many degenerate string-like states
which are not in the same subset. For example, flipping any chain’s spin for WP results in
a degenerate excitation with WP but already out of the subset of WP . In this sense, these
excitations cannot be identified as individual quasiparticles.

To peel off a designed subset, we need to set barriers between individual degenerate
ground states without changing their energies. To control the electron spin of each individual
chain is not easy. However, it becomes possible in a cold atom (molecule) system because the
‘spin’ we are studying actually labels the different hyperfine states of atoms in the cold atom
context . Once an atom is in a given hyperfine state, local fluctuations from the environment
cannot switch it to others. Therefore, we can peel off a given string-like excitation from
others by preparing the ground state. For example, we can apply a magnetic field so that
only the atoms with a given hyperfine state are loaded into the lattice and then turned off
the magnetic field after the system is stable at the ground state. A global ferromagnetic
ground state |G↑〉 = |G{↑,↑,...,↑}〉 is prepared. All excitations in (3) can then be prepared by
creating, annihilating the fermions or changing fermions from ↑ to ↓ hyperfine states by means
of the recently developed stimulated Raman spectroscopy or photoemission spectroscopy
technique[22]. Here, annihilating and creating a fermion does not mean removing fermions
from or reloading them into lattice sites. They can be turned into other hyperfine states which
are almost not coupled to the ‘spin’ ↑ and ↓ hyperfine states or reverse. The string-like
excitations may be controllably prepared. We may merely prepare excitations in a given
subset, and they are barricaded from their degenerate states. The string-like excitations
obeying mutual simonic statistics in this subset are now identified as mutual semions.

Recently, a realization of this model in superconducting circuits has been proposed [23].
It is also a possible way to peel off a semionic subset.

7
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8. Cold fermions with dipole–dipole interaction

For cold fermions in an optical lattice, the off-site interaction between the cold atoms can be
induced by their diploe–dipole interaction. Recently, the degenerate Fermi gases of rare-earth
atoms of Ytterbium (Yb) have been obtained [19]. They are a possible candidate to be a
practical system for our model because the fermionic isotopes 171Yb and 173Yb are stable
in nature and their metastable state 3P2 has a large magnetic dipole moment 3μB . Deeply
bound cold fermionic heteronuclear molecules have a much larger dipole moment, e.g. the
electric dipole moment of 40K87Rb in its absolute bound ground state is 0.3 eaB [20]. Load the
fermions in an optical lattice and polarize all dipoles along the horizontal diagonal of squares
by using an external field. The interaction potential is Vd(r, r′) = d2 1−3 cos2 �

R3 where � is the
angle between R = r − r′ and d (the dipole moment of an atom). The interactions along the
diagonal become attractive. The repulsive interaction is restricted in the region with � > �c

for cos2 �c = 1/3. The interacting Hamiltonian can be written as

V = −
∑

〈ij〉hd ,s

|Vij,s |ns,ins,j −
∑

〈〈ij〉〉hd ,s

|Vij |ns,ins,j

−
∑

ij,0<�<�c,s

|Vij |ns,ins,j +
∑

ij,�>�c,s

Vijns,ins,j , (6)

where 〈〈ij 〉〉hd denotes the sum along the horizontal diagonal other than the nearest neighbors.
It is very easy to stabilize the ground state because one may increase the distance between
the horizontal chains or adjust the optical lattice potentials so that the inter-chain couplings
become weak.

Strictly speaking, the anyons emerging from these dipolar particle systems are logarithmic
confinement in thermodynamic limit, i.e. Epair − Eg ∝ ln L as L → ∞ for L the distance
between a pair of the string-like excitations. This weak divergence in a practical optical lattice
may be abided, e.g. if the short-range model we proposed has Epair −Eg ∼ 1, this logarithmic
excitation energy is 4.5 for L = 50. Even for L = 1000, this energy only increases about
15 times.

9. Conclusion

In conclusion, we have proved that it is possible to find non-trivial mutual anyonic statistics in
a fermionic system with conventional two-body interaction under a fine-tuned external field.
We showed that the domain wall or string-like quasiparticles are deconfined in these fine-tuned
parameters and obey the same fusion as those in the toric code model. By means of a graphitic
method, we repeated Kitaev’s proof for the mutual semionic statistics of those quasiparticles
but our proof is more understandable. We also verified this mutual semionic statistics in an
operator formalism. How to peel up a subset of semionic quasiparticles from many degenerate
states and how to manipulate them were discussed. We also pointed out that these anyons can
be realized in cold fermions with dipole–dipole interaction.
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